PO/VC Rule of Invariant Preservation: Sequents

Abstract m0

variables: n

invariants: inv0_1 : $n \in \mathbb{N}$ inv0_2 : $n \le d$ ML_out **when** *n* < *d* **then** *n* := *n* + 1 **end** ML_in when n > 0 then n := n − 1 end A(c) $I(c, \mathbf{v})$ $J(c, \mathbf{v}, \mathbf{w})$ $H(c, \mathbf{w})$ \vdash $J_i(c, E(c, \mathbf{v}), F(c, \mathbf{w}))$

Concrete m1

variables: a, b, c

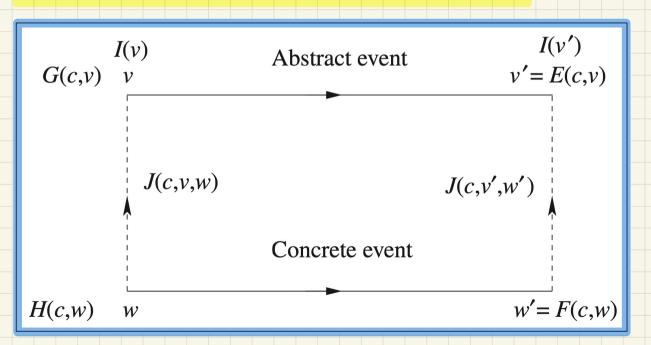
invariants: inv1 1 : $a \in \mathbb{N}$

 $inv1_2: b \in \mathbb{N}$

inv1_3 : $c \in \mathbb{N}$ inv1_4 : a+b+c=n

inv1_5: $a = 0 \lor c = 0$

ML_out **when** *a* + *b* < *d c* = 0 **then**


a := *a* + 1 **end**

ML_in
 when
 c > 0
 then
 c := c - 1
end

Q. How many PO/VC rules for model m1?

Visualizing Invariant Preservation in Refinement

Each concrete state transition (from w to w') should be simulated by an abstract state transition (from v to v')

Discharging POs of m1: Invariant Preservation in Refinement

ML_out/inv1_4/INV

$$d \in \mathbb{N}$$

 $d > 0$
 $n \in \mathbb{N}$
 $n \le d$
 $a \in \mathbb{N}$
 $b \in \mathbb{N}$
 $c \in \mathbb{N}$
 $a + b + c = n$
 $a = 0 \lor c = 0$
 $a + b < d$
 $c = 0$
 $(a+1) + b + c = (n+1)$

 $\frac{H1 \vdash G}{H1, H2 \vdash G} \quad MON$

P ⊢ *E* = *E*

$$\frac{H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})}{H(\mathbf{E}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{E})} \quad \mathbf{EQ_LR}$$

Discharging POs of m1: Invariant Preservation in Refinement

PO of Invariant Establishment in Refinement

Components

K(c): effect of abstract init

L(c): effect of concrete init

begin a := 0 b := 0 c := 0 **end**

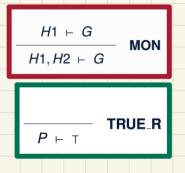
init

Rule of Invariant Establishment

inv1_**5**: $a = 0 \lor c = 0$

A(c) \vdash $J_i(c, K(c), L(c))$

Exercise:


Generate Sequents from the INV rule.

Q. How many PO/VC rules for model m1?

Discharging PO of Invariant Establishment in Refinement

$$d \in \mathbb{N}$$
 $d > 0$
 \vdash
 $0 + 0 + 0 = 0$

init/inv1_4/INV

$$d ∈ \mathbb{N}$$
 $d > 0$
⊢
 $0 = 0 ∨ 0 = 0$

init/inv1_5/INV